
RAG Assistant – Ibrahim Knowledge Base
🔗 Repo/Script Entry: __main__ triggers indexing via create_vector_store()

Aim of the Project

This project builds a lightweight Retrieval-Augmented Generation (RAG) assistant fine‑tuned to answer
questions about Ibrahim’s work and project documents. It indexes PDFs and CSVs, stores vector
embeddings in a local FAISS index, and serves grounded answers with linked sources. When questions are
too vague or off-topic, it gently steers users to ask about Ibrahim’s projects.

Objectives - Ingest and clean documents (PDFs, CSVs) about Ibrahim’s work. - Create a persistent FAISS
vector store for fast semantic search. - Retrieve the most relevant chunks (k=4) and generate faithful
answers with citations. - Provide a robust default/fallback message for vague or unsupported queries.

Tech Stack

Core: Python, LangChain
Vector Store: FAISS (local persisted index)
Models (OpenAI-compatible via GitHub Models):
Chat LLM: gpt-4o-mini (override via GHM_MODEL)
Embeddings: text-embedding-3-small (override via GHM_EMBED)
Endpoint: https://models.inference.ai.azure.com
Interface: Script with Streamlit import (future UI), CLI entry in __main__

Environment Variables - GITHUB_TOKEN (required) - GHM_MODEL (optional) - GHM_EMBED (optional)

Data Collection & Cleaning

Data Sources - Folder: documents/ - Supported types: PDF, CSV

Loaders - PDFs: PyPDFLoader splits by pages, emits Document objects per page. - CSVs: Loaded into
pandas; UTF‑8 first, with ISO‑8859‑1 fallback; serialized back to CSV‑text for embedding.

Text Cleaning (clean_text) - Concatenates hyphenated line breaks. - Joins single newlines into spaces,
preserves paragraph breaks. - Compacts 3+ newlines to 2. - Drops standalone numeric lines (page artifacts,
TOC counters).

Result: Cleaner, denser passages that embed better and reduce noise from PDF layout artifacts.

•
•
•
•
•
•
•

1

Document Chunking

Splitter: RecursiveCharacterTextSplitter

Parameters: chunk_size=1000 , chunk_overlap=200
Rationale: Keeps topical coherence while limiting token bloat; overlap retains cross‑chunk context for
retrieval.

Embeddings & Vector Store

Embeddings: OpenAIEmbeddings via GitHub Models endpoint, keyed by GITHUB_TOKEN .
Store: FAISS.from_documents(chunks, embeddings)

Persistence: Saved to faiss_index/ (created if absent). Enables warm restarts without
re‑embedding.

Index Build Pathways 1. Explicit: Run the script (__main__) → builds and saves FAISS. 2. Lazy: On first
query, if faiss_index/ is missing, auto‑index the documents/ folder.

Retrieval & Question Answering

Retriever - Built from the FAISS store with search_kwargs={"k": 4} to surface top‑4 chunks.

LLM - ChatOpenAI with low temperature (0.2) to favor factual, grounded outputs.

Prompt Strategy - System‑style prefix sets scope: “helpful assistant trained on Ibrahim’s work.” -
Vagueness Guardrail: If user asks general or unrelated questions, assistant nudges toward Ibrahim’s data
projects. - Chat History Conditioning: Optional chat_history (list of {role, content}) is
concatenated into the prompt to preserve context across turns.

QA Chain - RetrievalQA.from_chain_type(...) returns both the answer and source_documents. -
Sources are normalized to filename[, page N] for user‑readable citations.

Fallback Behavior - If no sources or the LLM signals insufficient question quality, returns a friendly, scoped
prompt suggesting topics like “football clustering,” “prediction systems,” etc.

Error Handling & Robustness

Missing Token: Raises at startup if GITHUB_TOKEN is not set.
CSV Encoding: Graceful fallback from UTF‑8 to ISO‑8859‑1.
Dangerous Deserialization: allow_dangerous_deserialization=True for FAISS load
(required by some LangChain/FAISS versions); keep index directory trusted.
Cold Start: Auto‑builds index if FAISS directory not found.

•
•
•

•
•
•

•
•
•

•

2

Security & Privacy

Secrets isolated via environment variables; tokens never hard‑coded.
All content remains local to the machine; FAISS index is on‑disk under project control.
If deploying Streamlit or an API, restrict file uploads and validate content paths.

Usage

Build / Rebuild the Index

python rag_assistant.py

or run the module that contains __main__

This scans documents/ , cleans and chunks, embeds, and saves FAISS to faiss_index/ .

Ask a Question (Programmatic)

answer, sources = get_rag_response("What is Ibrahim’s clustering workflow?")

print(answer)

print(sources)

Inputs - query: str – user question. - chat_history: list[dict] | None – optional prior
messages: {"role": "user|assistant", "content": "..."} .

Outputs - answer: str – grounded response. - sources: list[str] – list of deduplicated
filename[, page] indicators.

Design Decisions & Rationale

k=4 passages: balances breadth (mitigates single‑chunk bias) and token cost.
Low temperature (0.2): increases determinism and reduces hallucinations.
Simple custom prompt: scoped expertise avoids off‑topic drift for a personal knowledge base.
Local FAISS: lightweight, dependency‑free at runtime; no managed vector DB required.

Example Interaction

Q: “How does Ibrahim approach player clustering?”

•
•
•

•
•
•
•

3

A (summarized): Explains scraping from FBRef, cleaning & feature engineering (per‑90 metrics across
defensive/attacking/possession), scaling + K‑means, elbow method to pick K, PCA visualization (2D/3D), and
insights (e.g., unique creativity profiles).

Sources: e.g., Clustering Project Report.pdf, page 3 ; Clustering Project Report.pdf,
page 5 (actual pages depend on indexed files).

Limitations

No re‑ranking: Pure similarity search may surface redundant chunks; consider hybrid retrieval or
MMR for diversity.
No structured citations in text: Current chain returns raw sources; a custom prompt template
could format inline citations.
Streamlit import unused: Present code doesn’t expose a UI; add an app layer to chat and upload
docs.

Appendix – Key Functions

clean_text(text) : removes layout noise and artifacts.
load_and_clean_documents(folder_path) : loads PDFs/CSVs and applies cleaning.
split_documents(docs, chunk_size=1000, chunk_overlap=200) : chunking strategy.
create_vector_store() : builds and persists FAISS.
get_rag_response(query, chat_history=None) : complete RAG pipeline with fallback.

Summary

This RAG assistant creates a maintainable, token‑efficient, and privacy‑respecting knowledge base for
Ibrahim’s portfolio and technical work. It lays the groundwork for a Streamlit UI and more advanced
retrieval while already providing high‑signal, source‑grounded answers for common queries about his
projects.

•

•

•

•
•
•
•
•

4

	RAG Assistant – Ibrahim Knowledge Base
	Aim of the Project
	Tech Stack
	Data Collection & Cleaning
	Document Chunking
	Embeddings & Vector Store
	Retrieval & Question Answering
	Error Handling & Robustness
	Security & Privacy
	Usage
	Build / Rebuild the Index
	Ask a Question (Programmatic)

	Design Decisions & Rationale
	Example Interaction
	Limitations
	Appendix – Key Functions
	Summary

