
RAG Assistant – Ibrahim Knowledge Base
🔗 Repo/Script Entry: __main__  triggers indexing via create_vector_store()

Aim of the Project

This  project  builds  a  lightweight  Retrieval-Augmented  Generation  (RAG)  assistant  fine‑tuned to  answer
questions  about  Ibrahim’s  work  and  project  documents.  It  indexes  PDFs  and  CSVs,  stores  vector
embeddings in a local FAISS index, and serves grounded answers with linked sources. When questions are
too vague or off-topic, it gently steers users to ask about Ibrahim’s projects.

Objectives - Ingest and clean documents (PDFs, CSVs) about Ibrahim’s work. - Create a persistent FAISS
vector  store  for  fast  semantic  search.  -  Retrieve  the  most  relevant  chunks  (k=4)  and  generate  faithful
answers with citations. - Provide a robust default/fallback message for vague or unsupported queries.

Tech Stack

Core: Python, LangChain
Vector Store: FAISS (local persisted index)
Models (OpenAI-compatible via GitHub Models):
Chat LLM: gpt-4o-mini  (override via GHM_MODEL )
Embeddings: text-embedding-3-small  (override via GHM_EMBED )
Endpoint: https://models.inference.ai.azure.com
Interface: Script with Streamlit import (future UI), CLI entry in __main__

Environment Variables - GITHUB_TOKEN  (required) - GHM_MODEL  (optional) - GHM_EMBED  (optional)

Data Collection & Cleaning

Data Sources - Folder: documents/  - Supported types: PDF, CSV

Loaders -  PDFs: PyPDFLoader  splits by pages, emits  Document  objects per page. -  CSVs: Loaded into
pandas; UTF‑8 first, with ISO‑8859‑1 fallback; serialized back to CSV‑text for embedding.

Text Cleaning ( clean_text ) - Concatenates hyphenated line breaks. - Joins single newlines into spaces,
preserves paragraph breaks. - Compacts 3+ newlines to 2. - Drops standalone numeric lines (page artifacts,
TOC counters).

Result: Cleaner, denser passages that embed better and reduce noise from PDF layout artifacts.
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Document Chunking

Splitter: RecursiveCharacterTextSplitter

Parameters: chunk_size=1000 , chunk_overlap=200
Rationale: Keeps topical coherence while limiting token bloat; overlap retains cross‑chunk context for
retrieval.

Embeddings & Vector Store

Embeddings: OpenAIEmbeddings  via GitHub Models endpoint, keyed by GITHUB_TOKEN .
Store: FAISS.from_documents(chunks, embeddings)

Persistence: Saved to faiss_index/  (created if absent). Enables warm restarts without
re‑embedding.

Index Build Pathways 1. Explicit: Run the script ( __main__ ) → builds and saves FAISS. 2. Lazy: On first
query, if faiss_index/  is missing, auto‑index the documents/  folder.

Retrieval & Question Answering

Retriever - Built from the FAISS store with search_kwargs={"k": 4}  to surface top‑4 chunks.

LLM - ChatOpenAI  with low temperature ( 0.2 ) to favor factual, grounded outputs.

Prompt  Strategy -  System‑style  prefix  sets  scope:  “helpful  assistant  trained  on  Ibrahim’s  work.”  -
Vagueness Guardrail: If user asks general or unrelated questions, assistant nudges toward Ibrahim’s data
projects.  -  Chat  History  Conditioning: Optional  chat_history  (list  of  {role,  content} )  is
concatenated into the prompt to preserve context across turns.

QA Chain -  RetrievalQA.from_chain_type(...)  returns both the answer and source_documents. -
Sources are normalized to filename[, page N]  for user‑readable citations.

Fallback Behavior - If no sources or the LLM signals insufficient question quality, returns a friendly, scoped
prompt suggesting topics like “football clustering,” “prediction systems,” etc.

Error Handling & Robustness

Missing Token: Raises at startup if GITHUB_TOKEN  is not set.
CSV Encoding: Graceful fallback from UTF‑8 to ISO‑8859‑1.
Dangerous Deserialization: allow_dangerous_deserialization=True  for FAISS load
(required by some LangChain/FAISS versions); keep index directory trusted.
Cold Start: Auto‑builds index if FAISS directory not found.
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Security & Privacy

Secrets isolated via environment variables; tokens never hard‑coded.
All content remains local to the machine; FAISS index is on‑disk under project control.
If deploying Streamlit or an API, restrict file uploads and validate content paths.

Usage

Build / Rebuild the Index

python rag_assistant.py

# or run the module that contains __main__

This scans documents/ , cleans and chunks, embeds, and saves FAISS to faiss_index/ .

Ask a Question (Programmatic)

answer, sources = get_rag_response("What is Ibrahim’s clustering workflow?")

print(answer)

print(sources)

Inputs -  query: str  –  user  question.  -  chat_history: list[dict] | None  –  optional  prior
messages: {"role": "user|assistant", "content": "..."} .

Outputs -  answer:  str  –  grounded  response.  -  sources:  list[str]  –  list  of  deduplicated
filename[, page]  indicators.

Design Decisions & Rationale

k=4 passages: balances breadth (mitigates single‑chunk bias) and token cost.
Low temperature (0.2): increases determinism and reduces hallucinations.
Simple custom prompt: scoped expertise avoids off‑topic drift for a personal knowledge base.
Local FAISS: lightweight, dependency‑free at runtime; no managed vector DB required.

Example Interaction

Q: “How does Ibrahim approach player clustering?”

• 
• 
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A (summarized): Explains  scraping  from FBRef,  cleaning  & feature  engineering  (per‑90  metrics  across
defensive/attacking/possession), scaling + K‑means, elbow method to pick K, PCA visualization (2D/3D), and
insights (e.g., unique creativity profiles).

Sources: e.g.,  Clustering Project Report.pdf, page 3 ;  Clustering Project Report.pdf, 
page 5  (actual pages depend on indexed files).

Limitations

No re‑ranking: Pure similarity search may surface redundant chunks; consider hybrid retrieval or
MMR for diversity.
No structured citations in text: Current chain returns raw sources; a custom prompt template
could format inline citations.
Streamlit import unused: Present code doesn’t expose a UI; add an app layer to chat and upload
docs.

Appendix – Key Functions

clean_text(text) : removes layout noise and artifacts.
load_and_clean_documents(folder_path) : loads PDFs/CSVs and applies cleaning.
split_documents(docs, chunk_size=1000, chunk_overlap=200) : chunking strategy.
create_vector_store() : builds and persists FAISS.
get_rag_response(query, chat_history=None) : complete RAG pipeline with fallback.

Summary

This  RAG  assistant  creates  a  maintainable,  token‑efficient,  and  privacy‑respecting  knowledge  base  for
Ibrahim’s  portfolio  and  technical  work.  It  lays  the  groundwork  for  a  Streamlit  UI  and  more  advanced
retrieval  while  already  providing  high‑signal,  source‑grounded  answers  for  common  queries  about  his
projects.
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